Highest vectors of representations (total 21) ; the vectors are over the primal subalgebra. | \(g_{5}+g_{-1}\) | \(g_{-13}\) | \(h_{4}+h_{1}\) | \(-h_{5}+2h_{1}\) | \(g_{13}\) | \(g_{1}+g_{-5}\) | \(g_{12}+2g_{2}\) | \(g_{3}\) | \(g_{16}\) | \(-g_{8}+2g_{6}\) | \(g_{7}\) | \(g_{18}\) | \(g_{17}+g_{11}\) | \(g_{19}\) | \(g_{10}\) | \(g_{20}\) | \(g_{21}\) | \(g_{22}\) | \(g_{23}\) | \(g_{24}\) | \(g_{25}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-2\psi_{1}-4\psi_{2}\) | \(-2\psi_{1}\) | \(0\) | \(0\) | \(2\psi_{1}\) | \(2\psi_{1}+4\psi_{2}\) | \(\omega_{1}-\psi_{1}-2\psi_{2}\) | \(\omega_{1}-\psi_{1}\) | \(\omega_{1}+\psi_{1}\) | \(\omega_{1}+\psi_{1}+2\psi_{2}\) | \(2\omega_{1}-2\psi_{1}-2\psi_{2}\) | \(2\omega_{1}-2\psi_{2}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}+2\psi_{2}\) | \(2\omega_{1}+2\psi_{1}+2\psi_{2}\) | \(3\omega_{1}-\psi_{1}-2\psi_{2}\) | \(3\omega_{1}+\psi_{1}+2\psi_{2}\) | \(4\omega_{1}-2\psi_{1}-4\psi_{2}\) | \(4\omega_{1}\) | \(4\omega_{1}+2\psi_{1}+4\psi_{2}\) |
Isotypical components + highest weight | \(\displaystyle V_{-2\psi_{1}-4\psi_{2}} \) → (0, -2, -4) | \(\displaystyle V_{-2\psi_{1}} \) → (0, -2, 0) | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{2\psi_{1}} \) → (0, 2, 0) | \(\displaystyle V_{2\psi_{1}+4\psi_{2}} \) → (0, 2, 4) | \(\displaystyle V_{\omega_{1}-\psi_{1}-2\psi_{2}} \) → (1, -1, -2) | \(\displaystyle V_{\omega_{1}-\psi_{1}} \) → (1, -1, 0) | \(\displaystyle V_{\omega_{1}+\psi_{1}} \) → (1, 1, 0) | \(\displaystyle V_{\omega_{1}+\psi_{1}+2\psi_{2}} \) → (1, 1, 2) | \(\displaystyle V_{2\omega_{1}-2\psi_{1}-2\psi_{2}} \) → (2, -2, -2) | \(\displaystyle V_{2\omega_{1}-2\psi_{2}} \) → (2, 0, -2) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{1}+2\psi_{2}} \) → (2, 0, 2) | \(\displaystyle V_{2\omega_{1}+2\psi_{1}+2\psi_{2}} \) → (2, 2, 2) | \(\displaystyle V_{3\omega_{1}-\psi_{1}-2\psi_{2}} \) → (3, -1, -2) | \(\displaystyle V_{3\omega_{1}+\psi_{1}+2\psi_{2}} \) → (3, 1, 2) | \(\displaystyle V_{4\omega_{1}-2\psi_{1}-4\psi_{2}} \) → (4, -2, -4) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | \(\displaystyle V_{4\omega_{1}+2\psi_{1}+4\psi_{2}} \) → (4, 2, 4) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | \(W_{17}\) | \(W_{18}\) | \(W_{19}\) | \(W_{20}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
|
| Cartan of centralizer component.
|
|
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-2\psi_{1}-4\psi_{2}\) | \(-2\psi_{1}\) | \(0\) | \(2\psi_{1}\) | \(2\psi_{1}+4\psi_{2}\) | \(\omega_{1}-\psi_{1}-2\psi_{2}\) \(-\omega_{1}-\psi_{1}-2\psi_{2}\) | \(\omega_{1}-\psi_{1}\) \(-\omega_{1}-\psi_{1}\) | \(\omega_{1}+\psi_{1}\) \(-\omega_{1}+\psi_{1}\) | \(\omega_{1}+\psi_{1}+2\psi_{2}\) \(-\omega_{1}+\psi_{1}+2\psi_{2}\) | \(2\omega_{1}-2\psi_{1}-2\psi_{2}\) \(-2\psi_{1}-2\psi_{2}\) \(-2\omega_{1}-2\psi_{1}-2\psi_{2}\) | \(2\omega_{1}-2\psi_{2}\) \(-2\psi_{2}\) \(-2\omega_{1}-2\psi_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+2\psi_{2}\) \(2\psi_{2}\) \(-2\omega_{1}+2\psi_{2}\) | \(2\omega_{1}+2\psi_{1}+2\psi_{2}\) \(2\psi_{1}+2\psi_{2}\) \(-2\omega_{1}+2\psi_{1}+2\psi_{2}\) | \(3\omega_{1}-\psi_{1}-2\psi_{2}\) \(\omega_{1}-\psi_{1}-2\psi_{2}\) \(-\omega_{1}-\psi_{1}-2\psi_{2}\) \(-3\omega_{1}-\psi_{1}-2\psi_{2}\) | \(3\omega_{1}+\psi_{1}+2\psi_{2}\) \(\omega_{1}+\psi_{1}+2\psi_{2}\) \(-\omega_{1}+\psi_{1}+2\psi_{2}\) \(-3\omega_{1}+\psi_{1}+2\psi_{2}\) | \(4\omega_{1}-2\psi_{1}-4\psi_{2}\) \(2\omega_{1}-2\psi_{1}-4\psi_{2}\) \(-2\psi_{1}-4\psi_{2}\) \(-2\omega_{1}-2\psi_{1}-4\psi_{2}\) \(-4\omega_{1}-2\psi_{1}-4\psi_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}+2\psi_{1}+4\psi_{2}\) \(2\omega_{1}+2\psi_{1}+4\psi_{2}\) \(2\psi_{1}+4\psi_{2}\) \(-2\omega_{1}+2\psi_{1}+4\psi_{2}\) \(-4\omega_{1}+2\psi_{1}+4\psi_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\psi_{1}}\) | \(\displaystyle M_{2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-\psi_{1}}\oplus M_{-\omega_{1}-\psi_{1}}\) | \(\displaystyle M_{\omega_{1}+\psi_{1}}\oplus M_{-\omega_{1}+\psi_{1}}\) | \(\displaystyle M_{\omega_{1}+\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{-2\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{2}}\oplus M_{-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{2}}\oplus M_{2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}-\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-\psi_{1}-2\psi_{2}} \oplus M_{-3\omega_{1}-\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}+\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\psi_{1}+2\psi_{2}} \oplus M_{-3\omega_{1}+\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{-2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-4\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+4\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}+4\psi_{2}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{-2\psi_{1}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{2\psi_{1}}\) | \(\displaystyle M_{2\psi_{1}+4\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{\omega_{1}-\psi_{1}}\oplus M_{-\omega_{1}-\psi_{1}}\) | \(\displaystyle M_{\omega_{1}+\psi_{1}}\oplus M_{-\omega_{1}+\psi_{1}}\) | \(\displaystyle M_{\omega_{1}+\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus M_{-2\psi_{1}-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}-2\psi_{2}}\oplus M_{-2\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{2}}\oplus M_{2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus M_{2\psi_{1}+2\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-\psi_{1}-2\psi_{2}}\oplus M_{\omega_{1}-\psi_{1}-2\psi_{2}}\oplus M_{-\omega_{1}-\psi_{1}-2\psi_{2}} \oplus M_{-3\omega_{1}-\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+\psi_{1}+2\psi_{2}}\oplus M_{\omega_{1}+\psi_{1}+2\psi_{2}}\oplus M_{-\omega_{1}+\psi_{1}+2\psi_{2}} \oplus M_{-3\omega_{1}+\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus M_{-2\psi_{1}-4\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-4\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}-4\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus M_{2\psi_{1}+4\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+4\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}+4\psi_{2}}\) |
2\\ |